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ABSTRACT This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us
to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I),
tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting
forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at
very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controlla-
ble direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers,
magnetic flux gradients of =B ¼ 8 3 103 T m�1 can be achieved over the dimensions of a single cell. This allows exertion of
forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm
of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.

INTRODUCTION

Biological sciences are entering a completely new phase.

Genomics, proteomics, and metabolomics have provided us

with a long list of components and physical interactions and

chemical reactions that occur in the living cell. We are now

at the very beginning of an era in which we have to integrate

this knowledge in terms of networks of molecular processes.

Such networks are responsible for fundamental processes,

such as the orchestration of gene expression, intermediary

metabolism, signal transduction, and cell cycle control,

processes that are precisely controlled in time and space.

These interaction networks constitute the molecular basis of

life. At the same time, importantly, they are the key to un-

derstanding the pathological state of cells, for instance during

tumorigenesis, and for the rational design of drugs and

therapies.

A variety of techniques has been developed to investigate

the localization, dynamics, and interactions of molecules

inside living cells, for instance, the use of green fluorescent

protein technology in combination with live cell microscopy,

fluorescence recovery after photobleaching, and fluores-

cence resonance energy transfer (Wouters et al., 2001).

These and other techniques are giving detailed insight into

molecular processes in living cells. However, these ap-

proaches have the limitation that they only passively follow

the processes in time and space in cells and tissues.

A number of techniques have been developed for

nanomanipulation of biological systems and single mole-

cule research. Techniques such as atomic force microscopy

(Viani et al., 1999), optical tweezers (Svoboda et al., 1993),

and to a limited extend magnetic tweezers (Strick et al.,

1996) are widely used to study the behavior of individual

macromolecules. To this end, molecules are often attached

to micron-sized latex and/or magnetic beads, allowing the

nanometer-accurate movement and positioning of the

molecule and the measurement and exertion of forces on

these molecules in the biologically relevant picoNewton

(pN) range. Experiments have addressed the dynamics of

various biomolecular systems, including the movement of

a single RNA-polymerase along a DNA molecule (Daven-

port et al., 2000), kinesin movement along microtubules

(Howard et al., 1989), and the analysis of chromatin

structure (Pope et al., 2002). However, the limitation of

these techniques is that they rarely allow the analysis of

molecular systems inside live cells or tissues. Requirements

for techniques that do allow for nanomanipulation inside

cells are as follows: I), the force probes used should be

small (�1 mm); II), the forces that can be exerted on the

probe should be in the relevant biological range of at least

a few pN; and III), the forces should be controllable in

amplitude and direction to maneuver the probe to the site

of interest. The use of magnetic forces may be a good

candidate to achieve these requirements. Present-day

application of magnetic tweezers to live cells relies mostly

on microrheology (Bausch et al., 1999). It has been shown

that large forces can be exerted on magnetic beads that have

been introduced in cells (Hosu et al., 2003). However, these

magnetic tweezers consists of either one or two poles and

therefore do not easily allow the manipulation of magnetic

probes in different directions. In principle, one could

maneuver the pole(s) with respect to the bead such that

the force on the bead can be changed in direction. A major

drawback of such an approach is that it is technically very

difficult to obtain the required speed and accuracy for the

repositioning of the pole(s) to allow accurate manipulation.

Other, more practical designs have been realized that do
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consist of multiple magnetic poles and therefore allow for

two-dimensional (2D) or three-dimensional (3D) manipula-

tion but have the associated drawback of low forces

(Amblard et al., 1996; Gosse and Croquette, 2002; Huang

et al., 2002; Sacconi et al., 2001). In this article, a new type

of magnetic tweezers is described that relies on micron

scale magnetic pole structures that can be positioned close

to a living cell. It will be shown that in this way it is

possible to combine both high forces with the capability of

real 2D manipulation of the magnetic probe inside living

cells. These magnetic tweezers can potentially be used for

nanomanipulation of molecular systems inside living cells.

The technique of optical tweezers also has the advantage of

full 3D manipulation and has also been used to manipulate

beads inside cells or on cell surfaces for, e.g., micro-

rheology (Caspi et al., 2002; Laurent et al., 2002) or

molecular manipulation (Peters et al., 1999).The advantages

of magnetic tweezers become evident especially when

exploring intracellular properties. Optical tweezers exert

forces on microscopic objects that have a refractive index

contrast with its surroundings. Since there is a myriad of

such objects inside a cell, optical tweezers cannot always

selectively operate in the intracellular environment. Fur-

thermore, the relatively high optical intensities required can

damage the sample (Neumann et al., 1999).

MATERIAL AND METHODS

Magnetic tweezers design and fabrication

A major design goal of the current magnetic tweezers is to achieve high

forces on relatively small magnetic beads in combination with the possibility

to control the direction of the force (in 2D). The magnetic force Fm on a

magnetic bead with a magnetization m is given by Eq. 1:

F~¼ =m~ = ==B~=; (1)

where B denotes the magnetic flux density. The amplitude of the force thus

depends on the achievable field gradient and on the magnetization of the

bead. The latter is limited by material properties of the bead due to

saturation of the magnetization at high magnetic fields. Choosing proper

materials (e.g., iron or cobalt-iron alloys) that have a high saturation

magnetization and a high magnetic susceptibility is required. Further

increasing the force relies on the optimization of the field gradient. In

general, a field gradient is created by using a pole that conducts magnetic

flux into a sharp tip. The high flux density at the pole tip strongly diverts

outside the pole tip, resulting in a high field gradient. The maximum

achievable field gradient depends on both the saturation magnetization of

the pole material and the geometry of the pole tips. Considering a parabolic

shaped pole tip, an analytical expression can be derived for the field

gradient at a given distance r from the pole defined as in Eq. 2 (see

Appendix A):

=BðrÞ ¼ 4m0Mmb

ð4br1 1Þ2
: (2)

In Fig. 1, this Eq. 2 is evaluated for different tip radii. Clearly, the

maximum field gradient achievable scales with the distance from the tip, r,

as =B ; r�1. However, the range over which the gradient exists is strongly

reduced in the limit of small tip radii. Considering the goal to use the

magnetic tweezers for live cell applications, the field gradient should be

optimized for distances of at least the order of the dimensions of a single cell.

This requires tip diameters in the order of micrometers. To be able to control

the direction of the force, the magnetic tweezers should consist of at least

three magnetic poles that can be operated individually.

The spatial geometry of the magnetic poles was optimized using finite

element software (FEMLAB, COMSOL, Stockholm, Sweden). Both four-

and three-pole geometries were considered. The general design of the

magnetic tweezers (consisting of four poles) is shown in Fig. 2. Four electric

coils are used to generate flux either toward or away from the poles. Due to

their small dimensions, the poles themselves are fabricated using cleanroom

technology as described elsewhere (deVries et al., 2004). In brief, cobalt is

electroplated onto glass substrates into a predefined pattern defined by

a photoresist layer. In this way, cobalt poles of well-defined shape and

thickness (up to ;8 micron) can be fabricated. Cobalt was chosen for its

relatively high saturation magnetization of 1.8 T (Watson, 1980) and its

resistance to aqueous environments. An example of a three-pole magnetic

structure is shown in Fig. 3.

The whole magnetic tweezers system is mounted on an optical

microscope (IMT-2 Olympus, Tokyo, Japan) equipped with a long working

distance objective lens (LWD CDPLAN 403, 0.55 NA, Olympus).

Movements of the bead inside the cell are recorded with a video camera

(with a frame rate of 25 Hz) and stored on tape for later analysis. The

recorded movies are digitized, and bead positions and displacements are

extracted from the individual frames by custom software. The standard

deviation in the determined bead position was estimated to be 0.1 pixel

corresponding to 14 nm as determined by analysis of images of a bead that

was glued to a glass substrate.

FIGURE 1 Calculated gradients in the magnetic flux density for single

parabolic shaped magnetic poles plotted as a function of the distance to the

pole tip for different pole tip radii. The dashed line corresponds to maximum

achievable gradient at a given distance.
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Force calibration and characterization
of the tweezers

A micropipette with known spring constant and having a magnetic bead at

the tip is used to measure the field gradient produced by the magnetic

tweezers. To this end, a magnetic bead (DYNABEADS M280, Dynal, Oslo,

Norway; volume magnetization of 11.5 kA m�1) is attached (using two-

component epoxy glue) to the end of the pipette, and this construct is

suspended perpendicular to the poles. The bead displacement Dx due to the

applied magnetic force Fm is recorded using video microscopy. The video is

analyzed off-line using custom Labview software (National Instruments,

Austin, Texas) that tracks the position of the bead with subpixel accuracy.

Having calibrated both the magnetic moment mb of the bead (using

a vibrating sample magnetometer) and the spring constant of the pipette kp

(against a calibrated atomic force microscopy cantilever), the magnetic field

gradient is found by Eq. 3:

Fx ¼ kpDx

=xB ¼ Fx=mb: (3)

Borosilicate pipettes of 1.2-mm outer diameter and 0.94-mm inner

diameters (Harvard Apparatus GC120TF-15, Holliston, MA) were pulled

using a Sutter (Novato, CA) P-87 micropipette puller. The stiffness of these

pipettes was calibrated against an AFM cantilever with known spring

constant. The two types of cantilever used for the calibration (TM

Microscopes (Veeco, Woodbury, NY), microlevers tip B and C) have

a spring constant of 10 and 20 nN mm�1, respectively. Before use, these

cantilevers are recalibrated in an AFM to get an improved accuracy of the

spring constant supplied by the manufacturer.

The pipette used for the calibration had a tip diameter of 800 nm, with

a final taper of only 1 mm. The micropipette was calibrated against both

AFM cantilevers, yielding a spring constant of 0.8 6 0.1 nN mm�1. The

force resolution is limited to ;10 pN.

The micropipette with magnetic bead was placed between the poles of

the magnetic tweezers by means of a micromanipulator. A square current

with 33% duty cycle (for the three-pole structure) was supplied to the coils,

so that the bead was pulled toward each one of the poles in succession, in

this way following a triangular path. The displacement Dx was calculated

as the distance from one of the corners of the triangle to the center of the

triangle. The recorded bead displacements and derived magnetic forces

were determined for different current amplitudes through the coils.

Although it is possible to determine the force at any given position within

the working area of the magnetic tweezers, measurements were limited

mainly to the center part of the tweezers. Slight deviations of several

micrometers from this center did not lead to large changes in force,

whereas positioning the bead close to the pole tips resulted in snapping of

the bead onto the pole tip due to the high forces and preventing an accurate

force measurement.

Bead protocol for live cell experiments

Two types of super paramagnetic beads are used: 1.05-mm diameter Dynal

‘MyOne’ (Dynal) magnetic beads and 0.35-mm diameter 47% g-Fe3O4

beads (Bangs Laboratory, Fischers, IN). Although the beads have a relatively

low volume magnetization (28.4 kA m�1 and 65.0 kA m�1, respectively),

forces up to 120 pN for the 1.05-mm beads and forces up to 12 pN for the

0.35-mm beads could be exerted, which proved to be enough to induce bead

displacements in live cells. The magnetic beads were opsonized using blood

serum to promote phagocytosis of the beads by the cells.

Cells

Magnetic beads were introduced into a living cell by phagocytosis.

Granulocytes were isolated from fresh blood, using standard density

centrifugation protocol from CLB (Central Laboratory Blood transfusion

service) at Amsterdam. Beads and cell suspension are then mixed and

incubated for 30 min. The cells with embedded beads are then deposited on

glass slides treated with poly-L-lysine and left to attach for 30 min for proper

adhesion of the cells to the glass slides. Before use, these slides are rinsedwith

phosphate-buffered saline buffer to remove any nonattached cells and beads.

Experimental procedure for live
cell measurements

A drop of phosphate-buffered saline buffer medium is placed on the

substrate containing the magnetic poles. The substrate with the granulocytes

is then positioned face-down on top of the substrate magnetic poles. A

sandwich is thus formed, with magnetic poles and cells in between the two

glass plates (Fig. 4). The cell substrate is attached to a micromanipulator,

FIGURE 2 Layout of a four-pole magnetic tweezers. A macroscopic

magnetic yoke accommodates four electric coils that are used to generate the

magnetic flux. The coils can be individually addressed to control the am-

plitude and the direction of the magnetic flux gradient at the center posi-

tion. In this figure, the resulting gradient and thus the force is directed to the

leftmost pole.

FIGURE 3 Microscope image of the pole tips of a three-pole magnetic

tweezers. Clearly visible are the granular structure of the cobalt. The edges

of the pole tips are not imaged sharply because they are slightly higher than

the central part of the poles.
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which allows selecting a cell containing a single magnetic probe, and

positioning the cell between the magnetic poles.

All experiments in this report were performed using a three-pole

magnetic tweezers configuration. Beads inside the cell were moved either

along a linear path by using steady-state coil currents or along a triangular

path by cycling the direction of the force clockwise from one pole to the

next. This was accomplished by driving the three coils with square waves

with a duty cycle of 33% and a phase difference between the poles of 2p/3.

Data analysis

From previous work (Bausch et al., 1998), it is well known that the behavior

of the cytoplasm upon the action of a mechanical force can be well described

by a viscoelastic model. The viscoelastic model (Feneberg et al., 2001) that

was used is shown in Fig. 5. It consists of a spring, characterized by spring

constant k, and two dashpots, characterized by viscous drag b1 and b2. In

this model, the response of a bead to a force step shows two regimes: a fast

initial elastic response of the bead followed by a slow viscous (or creep)

response. This model can be used to model one-dimensional motions of

a bead but can also be adapted to model 2D bead displacements as required

in this work. The 2D trajectory of a bead due to a time-varying force is given

by Eq. 4 (assuming homogeneous viscoelastic properties):

where the origin (x,y) ¼ (0,0) is defined as the initial position of the bead

(for t ¼ 0 s). This model appeared to be very well suited to describe the

experimental data. From a fit of the model to the experimental data,

quantitative information about the viscoelastic properties k, b1, and b2 are

obtained. These parameters are usually converted into the bead diameter

dbead independent elasticity m ¼ k/g and viscosity h ¼ b/g, with g

a geometrical factor given by g ¼ 3pdbead, where dbead denotes the bead

diameter.

RESULTS

Magnetic tweezers design

To fit a single cell, the extremities of the pole tips were

positioned on a circle with a 20-micron radius, leaving

a working area of ;20 3 20 mm2. The number of poles

should be at least three to allow full 2D manipulation. Both

three- and four-pole magnetic tweezers were evaluated. A

higher number of poles ($5) did not give better results.

Fig. 6 shows both the geometries that were evaluated. The

simulations performed here were limited to 2D geometrical

models and thus assume infinitely thick poles. Flux

generated in the left pole is carried away by the other poles,

thus creating a gradient in the magnetic flux directed toward

the left pole. Fig. 6 also gives the gradient in the flux density

measured along the line defined by the extremity of the left

pole and the center of the magnetic tweezers. The input flux

density was chosen such that the pole tips had a magnetiza-

tion of 1.8 T (the saturation magnetization). As such, the

presented gradients in the flux density can be considered as

an upper limit. Clearly, both pole geometries result in similar

gradients of 3 3 104 T m�1 at the center of the tweezers.

However, the three-pole geometry shows a much more

homogenous gradient at the different distances. Especially in

the central 10 mm, the gradient is homogenous within 10%.

To further optimize the geometry, pole tip sizes were varied

from 4 to 12 mm in diameter. Results (not shown) indicate

that gradients in the flux density do not vary significantly

with pole tip diameter.

Based on the results above, a three-pole geometry with tip

diameters of 5 mm was fabricated and characterized. The

method of fabrication of the poles was described previously

(deVries et al., 2004).

Characterization

The fabricated three-pole magnetic structures used in these

experiments have a measured thickness of 5 mm. The

magnetic properties of the poles were measured with a VSM

FIGURE 4 Experimental geometry for live cell measurements. Living

cells that contain magnetic beads are deposited on a microscope slide that is

placed upside down on the magnetic tweezers. A single cell of interest is

positioned exactly between the magnetic poles by the use of a micromanip-

ulator.

FIGURE 5 Mechanical equivalent circuitry that is used to model the

viscoelastic behavior of the bead movements consisting of a dashpot (b1) to

model the viscous behavior in series with a Kelvin body (spring (k) in

parallel with a dashpot (b2)).

xðtÞ
yðtÞ

� �
¼ ðb1b2Þ

�1
expð�kt=b2Þ

R
fexpðkt=b2ÞðFxðtÞðb1 1b2Þ1 k

R
FxðtÞdtÞgdt

ðb1b2Þ
�1
expð�kt=b2Þ

R
fexpðkt=b2ÞðFyðtÞðb1 1b2Þ1 k

R
FyðtÞdtÞgdt

� �
; (4)
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(vibrating sample magnetometer). From these measure-

ments, the following parameters could be obtained: satura-

tion magnetizationMsat ¼ 1.13 103 kA m�1; coercive force

Hc ¼ 9 kA m�1, and the remanesence Br ¼ 53 102 kA m�1.

Force calibration

In Fig. 7, the force on a 2.8-mm M280 Dynal bead is plotted

against the coil current. Forces that were achieved show

a saturation of;1 nN for high coil currents. Fig. 7 also gives

the theoretical saturation curve. In calculating the theoretical

curve, the saturation properties of the cobalt layer were in-

cluded by using a flux-dependent magnetic permeability as

defined in Eq. 5:

mr ¼
1

1� m0MðBÞ
B

; (5)

where M(B), the flux-dependent magnetization was derived

from measured M versus H data of the electroplated cobalt

layers that were used for the magnetic poles. Furthermore, to

include the effect of a limited thickness of the magnetic

poles, a 3D simulation has been performed for estimating the

field gradient in the center of the trap. Due to the complexity

of the model, solutions could only be obtained with a

relatively coarse mesh. The 2D model overestimates the

gradient in the flux density by a factor of 3.0 6 0.3 for the

5-mm thick magnetic poles.

Using the measured force on the magnetic bead (with

a magnetization m ¼ 1.3 3 10�13 A m2), the maximum

achievable gradient in the magnetic flux density was

calculated to be =B ¼ 8 3 103 T m�1. It is noted that this

value is four times smaller than that calculated earlier (=B ¼
3 3 104 T m�1, see above). This reduction is partly

FIGURE 6 Spatial distribution of the mag-

netic flux density obtained by numerical

simulations for (upper left) a four-pole geom-

etry and (upper right) a three-pole geometry. In

both cases, the incoming flux is from the left

pole. (Lower left) Magnetic flux density

gradients along a horizontal line through the

center of the tweezers in case of the four-pole

structure and (lower right) as (lower left) but

for the three-pole structure.

FIGURE 7 Measured (circles) and calculated (dashed line) forces exerted

on a magnetic bead (M280 from Dynal) positioned at the center of a three-

pole magnetic tweezers plotted for different coil currents.
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explained by the 2D versus 3D calculation which accounts

for a factor of 3. Furthermore, there is a difference in the

maximum saturation for cobalt (1.85 T) which is used in the

2D calculations and the saturation of the realized cobalt poles

(1.38 T), which accounts for another reduction in the gra-

dient of a factor of 1.3, which sums up to a total reduction of

1.3 3 3 ¼ 4.

From the 3D model, it was also possible to obtain the

gradient in the magnetic flux density in the direction

perpendicular to the surface as defined by the magnetic poles.

This gradient will result in a ‘‘perpendicular’’ force in the

corresponding direction. The calculations show that the

amplitude of this force at a position in the center of the

tweezers and within the thickness of the poles is two orders of

magnitude lower than the force toward the poles. During

experiments with beads inside living cells (see Manipulation

of small beads inside live cells), no noticeable effect of this

small force was observed during the course of the experiment,

although small displacements of the bead out of the focal

plane of the microscope would have been clearly visible.

Manipulation of small beads inside live cells

A granulocyte that contained a single magnetic bead was

maneuvered in between the poles of the magnetic tweezers.

Once the cell with bead was in place, the manipulation of the

magnetic beads was started. Fig. 8 shows the response of

a magnetic bead to various ways of one-dimensional and 2D

manipulation. In most cases, the magnetic beads could be

easilymaneuvered through the cell even at low forces of 5 pN.

The bead response was modeled using Eq. 4. Both one-

dimensional and 2D manipulation results could be well

described by the viscoelastic model as illustrated in Fig. 8.

Curve fitting of the linear movement (Fig. 8 c) resulted in the
following parameters for the 1.05-mm bead: h1 ¼ 2.9 3 101

Pa�s,h2¼ 2.0 Pa�s, andm¼ 2.13 101 Pa and for the 0.35mm

bead: h1 ¼ 3.0 Pa�s, h2 ¼ 0.1 Pa�s, and m ¼ 0.5 Pa. Fig. 8

d shows the behavior of the 1.05 mm bead if the direction of

the force is cycled between the three different poles in

a clockwise fashion. The experiment shows that the bead

experiences an additional force to the center when the force

is changed in direction as is evident from the bend in the arms

of the triangle toward the center. This phenomenon nicely

matches the viscoelastic model as shown and is explained by

the relaxation of the strain build up in the direction of the force

during the previous period in the force cycle. The continuous

cycling of the force had no visible effect on the observed path

of the bead during the course of the experiment. Only after

several minutes was it sometimes observed that the bead got

either stuck or the bead showed increasedmovement in one or

more directions. Only data obtained in the first fewminutes of

an experiment were taken into account for analysis. Repeated

experiments showed that the values that were obtained for the

viscoelastic properties for a single cell, at a specific position

within the cell, varied only 5%. Comparing obtained values at

different positions within the cell, or sometimes even at

different directions within a cell, or between different cells,

a much larger variation was observed. For both bead sizes,

five different cells were analyzed, and the corresponding

spread in the values results in a geometrical standard deviation

of the mean of 0.75 (i.e., 68% of the measurements are within

a factor of60.75 of the mean). The curves shown in Fig. 8 c
are typical curves that yield viscoelastic parameters close to

the average values.

DISCUSSION

The main purpose of this work is to present a new type of

magnetic tweezers that combines both high forces (in other

words, high gradients in the magnetic flux density) with 2D

manipulation. The obtained high gradient =B is comparable

to reported single pole magnetic tweezers (Hosu et al., 2003)

but almost two orders of magnitude higher than those

reported for multi-pole (.2 poles) tweezers (Amblard et al.,

1996; Huang et al., 2002). Further improvements can be

obtained by increasing the pole thickness (currently 5 mm).

Numerical calculations show that with a pole thickness larger

than 20 mm, the maximum achievable gradient is ap-

proached, which is;3 times larger than that achieved in this

work in which poles are used that have a maximum thickness

of 8 mm limited by the currently used photoresist. Increasing

the saturation magnetization of the pole material (in this case

cobalt) by either optimization of the cobalt poles (e.g., by

annealing) or by choosing other pole materials (cobalt-iron

alloys are good candidates) could result in a further im-

provement of the gradient =B.
The high gradients are required to enable the use of much

smaller beads than used thus far. Themanipulation of 350-nm

beads as demonstrated in this work is already considerably

smaller than the 1.28 mm reported by others (Hosu et al.,

2003), but estimations (Table 1) predict that the use of much

smaller beads is feasible. The use of iron particles that show

a much higher volume magnetization than the beads used so

far, consisting of Fe3O4 particles embedded in a polymer

matrix, allows reducing the size of the particle down to 100

nmwhile still enabling a force in the pN range. It is shown that

such forces are adequate to manipulate small beads through

the interior of a live cell. Experiments (results not shown)with

1-mm MyOne beads and with reduced coil currents indicate

that even relatively large beads can be manipulated through

the cell at those low pN forces.

Comparison of the viscoelastic properties that were

determined in this study with those reported in the literature

shows that for the 1.05-mm bead, both the viscosity and the

elasticity are in reasonable agreement with previous results

(Feneberg et al., 2001) obtained for similar bead size (1.3

mm) and comparable forces. Interestingly, this study shows

that for much smaller bead sizes, the viscosities as well as the

elasticity are strongly reduced even though the bead size is

still larger than the expected mesh size of the cytoskeleton,
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which is estimated to be ;0.1 mm (Feneberg et al., 2001;

Karcher et al., 2003). The fact that the bead is still embedded

in the cytoskeletal network is also apparent from the fact that

the observed viscosity of 3.0 Pa�s is still more than three

orders of magnitude larger that the viscosity of water. The

10-fold reduction in viscosity for the 0.35-mm bead

compared to the 1.05-mm bead can be explained by realizing

that the origin of the observed viscosity is the breaking of

local cross-links within the cytoplasmic network. For

a smaller diameter bead, much fewer bonds have to be

broken; to a first approximation, the number of bonds to be

broken scales with d2bead. Obviously, more experimental data

are required to confirm this hypothesis. Nevertheless, it

implies that the force that is required to manipulate a small

bead through the cytoplasm is lower than that required for

the larger beads, which is promising for future application of

the current magnetic tweezers for intracellular manipulation

experiments.

CONCLUSIONS

This study describes the development of a new type of

magnetic tweezers that enables the exertion of high forces on

magnetic beads and simultaneous control of the direction of

this force. Experimental results show that field gradients of

=B ¼ 8 3 103 T m�1 can be achieved with the fabricated

three-pole magnetic tweezers. These results are in agreement

with theoretical calculations. Based on these calculations, it

is predicted that further optimization of the magnetic

tweezers can yield a further three-fold improvement. Live

cell experiments show that beads with diameters of 1 mm and

0.35 mm, even though they show low magnetization, are

easily manipulated through the interior of a cell. These

promising results lend credence to the application of

magnetic tweezers for intracellular manipulation. Further

research will be directed to functionalizing magnetic beads

for specific applications (e.g., with fluorescent calcium

indicators to locally probe calcium concentrations) and to

further improvement of the magnetic tweezers with respect

to force and control of bead position.

FIGURE 8 Typical movements of beads in-

side a cell that can be induced with the current

magnetic tweezers. (a) Response of a bead that

experiences a constant force of 60 pN. The

bead trajectory is indicated by the white curve.

(b) More complex movements are possible by

changing the direction of the force. In this case,

a triangular movement is induced. The shown

trajectories in a and b are both to scale. (c)

Measurements (circles) of the displacement of

a 1.05-mm and a 0.35-mm bead versus time due

to a force step from 0 pN to 60 pN for the larger

bead and from 0 pN to 5 pN for the smaller

bead. The response clearly indicates the

viscoelastic behavior and is well described by

the model (solid line). (d) Bead positions when

the force is alternating between the three

different poles in a clockwise fashion. Clearly

a triangular movement is observed as expected.

The viscoelastic model describes the observed

movements very well (solid line).

TABLE 1 Overview of different magnetic beads and the

corresponding maximum force that can be exerted

using the current magnetic tweezers

Bead type Diameter mm

Volume magnetization

kAm�1

Force*

pN

DynaBeads-M280

(Dynal)

2.80 11.5 1000

MyOne (Dynal) 1.05 28.4 150

47% g-Fe3O4

(Bangs Labs)

0.35 65.0 12

100% Iron 0.10 1.7 3 103 7

*Forces for current tweezers. Maximum forces for optimized tweezers are

expected to be three times higher.
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APPENDIX A

Here the gradient in the magnetic flux density =B that can be achieved with

a single uniformly magnetized parabolic shaped pole tip is evaluated. For

such a system, Fig. 9, the resulting field can be calculated analytically. The

scalar magnetic potentialF can be defined as in Eq. A1 (Nayfeh and Brussel,

1985)

4pFðzÞ ¼
Z

dA
s

j
(A1)

as a function of the distance z to the pole extremity. Here s is the surface

charge, and j the distance to the surface element dA of the pole. The

integration extends over the whole pole surface, described by the quadratic

equation z ¼ bR2 with R2 ¼ x2 1 y2. For uniform magnetization Mm of the

pole material, the surface charge is equal to s ¼ Mmcosa, with tana ¼
�2bR the tangent to the paraboloid. Evaluation of the integral and

subsequent differentiation to z yields the following expression (Eq. A2) for

the magnetic field outside the magnetic material and along the paraboloid

axis (R ¼ 0):

HðzÞ ¼ �@FðzÞ
@z

¼ Mm

ð4bz1 1Þ: (A2)

The expression for the gradient in the magnetic flux density then follows

from Eq. A3:

=BðzÞ ¼ m0

@HðzÞ
@z

¼ 4m0Mmb

ð4bz1 1Þ2
; (A3)

with m0 ¼ 4p 10�7 Tm/A the vacuum permeability. Eq. A3 has been used to

evaluate =B for different poles sizes as shown in Fig. 1. The optimum

curvature for a given distance follows from the condition @F/@b ¼ 0 which

yields b ¼ 1/4z. Inserting this into Eq. A3 gives an expression of the

maximum attainable gradient for an optimal diameter relative to the distance

from the tip (Eq. A4):

=BðzÞ ¼ m0Mm

4z
: (A4)

This research was supported by the Life Sciences Foundation (SLW),

which is subsidized by the Netherlands Organization for Scientific Research

(NWO).

We greatly acknowledge many helpful discussions with Prof. Dr. J. Greve.

REFERENCES

Amblard, F., B. Yuke, A. Pargellis, and S. Leibler. 1996. A magnetic
manipulator for studying local rheology and micromechanical properties
of biological systems. Rev. Sci. Instrum. 67:818–827.

Bausch, A. R., W. Moller, and E. Sackmann. 1999. Measurement of local
viscoelasticity and forces in living cells by magnetic tweezers. Biophys.
J. 76:573–579 (and references therein).

Bausch, A. R., F. Ziemann, A. A. Boulbitch, and K. Jacobson. 1998. Local
measurements of viscoelastic parameters of adherent cell surfaces by
magnetic bead microrheometry. Biophys. J. 75:2038–2049.

Caspi, A., R. Granek, and M. Elbaum. 2002. Diffusion and directed motion
in cellular transport. Phys. Rev. E66:11916–1 – 11916–12.

Davenport, R. J., G. J. L. Wuite, R. Landick, and C. Bustamante. 2000.
Single-molecule study of transcriptional pausing and arrest by E-coli
RNA polymerase. Science. 287:2497–2500.

deVries, A. H. B., J. S. Kanger, B. E. Krenn, and R. van Driel. 2004.
Patterned electroplating of micrometer scale magnetic structures on glass
substrates. J. Microelectromech. S. 13:391–395.

Feneberg, W., M. Westphal, and E. Sackman. 2001. Dictyostelium cells’
cytoplasm as an active viscoplastic body. Eur. Biophys. J. 30:284–294.

Gosse, C., and V. Croquette. 2002. Magnetic tweezers: micromanipulation
and force measurement at the molecular level. Biophys. J. 82:3314–3329.

Hosu, B. G., K. Jakab, P. Bánki, F. I. Tóth, and G. Forgacs. 2003. Magnetic
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FIGURE 9 Definition of the evaluated single parabolic shaped magnetic

pole. The parameter b defines the pole tip radius.
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